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Extended Stokes series: laminar flow
through a loosely coiled pipe
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Department of Mechanical Engineering, Stanford University, Stanford, California 94305
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Dean’s series for steady fully developed laminar flow through a toroidal pipe of small
curvature ratio has been extended by computer to 24 terms. Analysis suggests that
convergence is limited by a square-root singularity on the negative axis of the square
of the Dean number. An Euler transformation and extraction of the leading and
secondary singularities at infinity render the series accurate for all Dean numbers.
For curvature ratios no greater than 315, experimental measurements of the laminar
friction factor agree with the theory over a wide range of Dean numbers. In particular,
they confirm our conclusion that the friction in a loosely coiled pipe grows asymptoti-
cally as the one-quarter power of the Dean number based on mean flow speed. This
contradicts a number of incomplete boundary-layer analyses in the literature, which
predict a square-root variation.

1. Introduction

An attractive alternative to finite-difference computation, at least in simple
problems, consists of extending a perturbation series to high order by delegating to the
computer the rapidly mounting arithmetic labour. Contemporary digital computers
can, in a few minutes, calculate hundreds of terms for a linear problem and dozens of
terms for a nonlinear one (Van Dyke 1975).

The range of applicability of the resulting series is ordinarily very limited. The
author has discussed (Van Dyke 1974) how it can be extended by analysing the
coefficients to unveil the analytic structure of the solution, and on that basis applying
a variety of devices to improve the utility of the series. Most of these techniques are
borrowed from physicists working on the statistical thermodynamics of critical pheno-
mena (Gaunt & Guttmann 1974). Several additional ones are introduced in this paper.

A likely field of application for this three-step scheme of extension, analysis and
improvement is to the solution of the Navier-Stokes equations. In particular, we
consider here expansions for low Reynolds numbers. We understand Reynolds number
in a generalized sense as any dimensionless measure of the relative importance of
nonlinear and viscous effects, so that it may be the Rayleigh or Grashof number,
Taylor number, etc., and in the present case the Dean number.

Such expansions have been termed Stokes series, because they are based on Stokes’s
investigation of the effect of viscosity on the motion of a pendulum, and on his
linearized form of the Navier—Stokes equations. Of course Stokes and his successors
discovered that for uniform flow past an object the low-Reynolds-number approxi-
mation is a singular perturbation. Since we do not know how to automate the method
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130 M. Van Dyke

of matched asymptotic expansions, we must restrict attention to regular perturba-
tions: flows that are sufficiently confined by boundaries, or decay rapidly enough with
distance. Then the solution of the Navier-Stokes equations is found as a power series
in the Reynolds number.

For the linearized Oseen equations, the author has extended the Stokes series of
Goldstein for the drag of a sphere to 24 terms (Van Dyke 1970), and found that from
it can be extracted the drag at infinite Reynolds number. This raises the hope that
likewise for the Navier—Stokes equations a Stokes series can be modified so as to con-
verge for large Reynolds number. This objective might be thought unnecessarily
ambitious, since high Reynolds numbers are the special province of boundary-layer
theory. However, the laminar flows amenable to Stokes expansions are often just
those where the boundary-layer structure is not clear because it involves colliding
layers and internal jets, or the boundary-layer theory cannot be used at all because
the flow separates. Furthermore, higher approximations in boundary-layer theory
have proved disappointingly limited, and finite-difference computations become
unreliable as the Reynolds number is increased. We see in this paper that the extended
Stokes series provides, in a favourable problem, the most effective way of spanning the
whole range of Reynolds numbers for laminar flow.

We examine one of the simplest problems that is realistic enough to have been the
subject of experiments.t This is the steady fully developed laminar flow through a
coiled pipe of circular cross-section. All previous analyses have been simplified by
neglecting the helicity of the coil; furthermore Dean (1928) discovered that to a good
approximation for loose coiling the motion depends not separately upon the Reynolds
number R and the ratio a/L of the radius of the cross-section to the coiling radius, but
only upon the product R%*a/L)-a similarity parameter that has subsequently, in
several variants, been called the Dean number; we adopt both these approximations.

Previous work on this problem can be divided into four categories. First, experi-
ments have been conducted by, among others, White (1929), Taylor (1929), Adler
(1934), It5 (1959) and Mori & Nakayama (1965). Second, Dean (1927, 1928) developed
a perturbation about Poiseuille flow through a straight pipe that yields the Stokes
series being considered here, and carried it to the fourth power of the Dean number.
Topakoglu (1967) retained higher-order terms in the curvature ratio a/L, to obtain a
double power series in the curvature ratio and Dean number, as did Larrain & Bonilla
(1970) in extending the series to 14th order by computer. Third, boundary-layer
analyses for high Dean number have been proposed by Adler (1934), Barua (1963),
Mori & Nakayama (1965), Itd (1969) and Smith (1975, 1976). Fourth, numerical
solutions have been calculated by McConalogue & Srivastava (1968), Truesdell &
Adler (1970), Akiyama & Cheng (1971), Austin & Seader (1973), Collins & Dennis
(1975), and others. Truesdell & Adler and Austin & Seader include the effects of finite
curvature ratio.

+ The simplest problem of all is probably the steady plane flow inside & circle due to
translation of the boundary with a speed that varies with angle, for which Kuwahara & Imai
(1969) carried the Stokes series to eighth order by computer, and Conway (1978) carried it to
22nd order; but experiments would be difficult.
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Ficure 1. Notation for coiled pipe.

2. Summary of Dean’s analysis

We adopt Dean’s co-ordinate system (figure 1) and his normalization: lengths are
referred to the radius a of the pipe, and the velocity w down the pipe to the maximum
speed W, = Ga?/4u in a straight pipe under the same axial pressure gradient

G = L10p/op,

but the stream function i for the secondary motion is referred to the kinematic
viscosity v (which means that transverse velocities are referred to v/a). Then in the
approximations of negligible helicity and loose coiling the Navier—Stokes equations
for incompressible fluid reduce to [Dean 1928, equations (15)-(18)]

1 () ow & ow

2 = = (== 2 _Z8 7))

Vw—r(é)r o6 6 37’) 4 (2.1)
1 (o 06 O 0 . (sinf ow ow
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Vz/r_r(ar %670 37‘)V 1/r+lxu( s cosﬁar). (2.2)

Here V2 = 02/or2+r-10/0r +r-20%*/00% is the Laplacian in the transverse plane, and
K is Dean’s similarity parameter

W,a\2a G’
K=2 (T) L~ g2l (2.3)
The boundary conditions require that
w=y=0y/or=0 at r=1. (2.4)

If the pipe is straight, K is zero, and the solution is that for Poiseuille flow, with
w = wy = 1 —r2 and ¥ = 0. Dean treats the curved pipe as a systematic perturbation
of the straight one by expanding in powers of K:

w= w0+le+K2u'2+..‘,} (2.5)

Y= Kihy + K%t ...
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Substituting into the equations and boundary conditions yields a sequence of succes-
sively more complicated linear problems that can be solved in turn to give

Jry = shg(4r — 913 + 675 —17) cos 6,
¥, 17 o ) } (2.6)
576

w, (187 — 3+ 315 — Jr7 + 7 sin 6,

and so on. Dean quotes part of the solution for w,, and then, remarking that ‘the
difficulty of successively finding the functions becomes rapidly greater’, gives without
details the result to order K* for the ratio of flux through the curved pipe to that
through the corresponding straight pipe under the same pressure gradient:{

[= 2]

F/F, = 3 a,(1sK)™ =1—-003058(335K)2+0:01195(z 1K)t +... . (2.7)
n=0

Experimenters measure the friction factor A and, following White (1929), usually plot
the friction ratio, the resistance in the curved pipe divided by that in a straight pipe
carrving the same flux. This is easily seen to be the reciprocal of the flux ratio (2.7),
and is accordingly given in Dean’s approximation by

/\L'//\s = (‘FL'/‘F.s)hl = § bn(g"}'ﬁK)zn
= 1+0-03058(51 K)2—0-01100(s35K)4+ ... (2.8)

In extending Dean’s expansion, we shall examine in particular this reciprocal pair of
Stokes series.

3. Computer extension of Dean’s series

Numbers are kept within range on the computer by incorporating the powers of
576 that appear in (2.7) and (2.8) into the expansion, rewriting Dean’s series (2.5) as

w =
”n

1 b8

(s3cE)hw,, ¥ = ;-j 516 K)" Ve (3.1)

1] n

By induction we find that the functions w, and ¥, depend upon the co-ordinates as
follows:

7 J+1 27— 2)0 r2—2
w, = 3% E cos ( )81‘2. , M even,
iS4 21 M sin (20— 1)8r2-1 qoodd, (3.2)
I J sin (2 — 2)0r%-2, 5 even '
o= v ’
¥n 1-2:1 =1 Cni {cos(2z—1)0r21“1 n odd.

Here I and J are the greatest integers less than or equal to {(n+2) and }(Tn+2),
respectively. We work also with the corresponding expressions for V2w, V4, and

vy

t Later writers have mistakenly disputed these coefficients. Adler (1934) claims that the
second should be 0:03048, and Sankaraiah & Rao (1973) change the third to 0-012167 without
comment; but we have confirmed the second as 1541/50400 = 0-0305754 by hand, and our
computer calculations as well as those of Larrain & Bonilla (1970) give the third as 0-01193.
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n aﬂ bﬂ cﬂ dﬂ eﬂ fﬂ
0 1-0000000000 100000 1-00000 1-:00000 1-00000 —0-033237
1 —0-0305753968 0-03058 —0-03162 0-03162 0-01838 0-042766
2 0-0119311827 —0-01100 —0-01886 0-01986 0-00581 —0-006885
3 —0-0065846067 0-00588 —0-01338 0-01461 0-00278 - 0-001477
4 0-0042384991 —0-00373 —~0-01034 0-01160 0-00161 —0-000530
5 —0-0029771923 0-00259 —0:00840 0-00964 0-00103 —0-000250
6 0-0022124224 —0-00191 —~0-00707 0-00826 0-00072 —0-000140
7 —0-0017101745 0-00147 —0:00609 0-00723 0-:00052 —0-000089
8 0:0013610001 —0-00117 —0-00534 0-00643 0-00040 — 0-000060
9 —0-0011076549 0-00095 —0-00475 0-00579 0-00031 —0-000043
10 0-0009176324 - 000078 —0-00428 0-00527 0-00026 —0-000031
11 ~0-0007712689 0-00066 —0-00389 0-00484 0-00021 — 0-000022
12 0-0006560579 - 0-00056 —0-00356 0-00447 0-00018 - 0-000016

TaBLE 1. Coefficients in Stokes series for flux ratio.

We have written a FORTRAN program of some 500 statements that calculates
successively the coefficients in these expressions. In outline, it consists of the following
segments:

(1) With » even, compute the coefficients of V4, from (2.2).

(2) Compute the coefficients C,;; of y,,.

(3) Compute the coefficients of V3.

(4) Increasen by onetobecome odd, and compute the coefficients of V2w, from (2.1).
(5) Compute the coefficients of w,. '

(6) Return to step 1 with » odd and continue.

Because the program consists mainly of DO loops nested five deep, the computing
time is found to increase with between the fifth and sixth powers of the number of
terms. The solution was computed up to K¢ in 8 min on the IBM 360/67 machine,
and later up to K2¢in 5 min on the CDC 7600 machine, which is an order of magnitude
faster and has the additional advantage of providing 28 significant figures in double-
precision arithmetic. To this order the solution is represented by some 8200 non-zero
coefficients C,;; in (3.2) and 8900 of the £, ;.

Comparison of single- and double-precision computations shows that not quite one
significant figure is lost from these coefficients, as a result of truncation and round-off
errors, each time n is increased by two. We are therefore confident that our coefficients
are all correct to 16 figures.

The coefficients in Dean’s series (2.7) for the flux ratio are listed to 10 decimal places
in the second column of table 1. Up to n = 7 they agree precisely with the results of
Larrain & Bonilla (1970) to the seven places that they published. The resulting
coefficients for the inverse series (2.8) are given in the third column, but to fewer
figures because more can be derived if necessary from those of the direct series.

4. Convergence of Dean’s series

Supposing that the critical Reynolds number is the same for a curved as for a
straight pipe, Dean (1928) estimated that laminar flow would be of practical interest
for values of K up to perhaps 10%. Remarkably, the experiments of White (1929)



134 M. Van Dyke

06

1 L 1 1 i
0 01 02

Figure 2. Domb-Sykes plot for extended Dean series (2.7). +, plotted vs. 1/n;
O, plotted vs. 1/(n+13); , asymptote for @ = 4 and #-! = 0-967.

showed that curvature stabilizes the flow, so that it appeared to be laminar even above
K = 108, On the other hand, Dean suggested that his result is ‘ probably not valid when
K exceeds 400°, though he also remarked that the error in (2.7) is not likely to be
serious when K = 576; and subsequent writers (e.g. Larrain & Bonilla 1970; Sankaraiah
& Rao 1973) have concluded that the series converges up to K = 576.

We can estimate the radius of convergence # accurately using a graphical ratio test
and other devices for analysing series (Van Dyke 1974; Gaunt & Guttmann 1974).
First, we observe that the coefficients in (2.7) alternate regularly in sign; this indicates
that the nearest singularity, which limits the convergence, lies on the negative real
axis of (345K)? Now if that singularity is algebraic, with exponent «, the ratio a,,/a,,_,
of successive coefficients will be linear in 1/x for large n:

a, -1 14+
~N—1l——+...]. 4.
Gy £ ( n * ) (+.1)

We therefore plot a,/a,_, vs. 1/n—the Domb-Sykes plot—and fit a straight-line
asymptote. Its intercept on the a, /a,_, axis yields an estimate for the reciprocal of the
radius of convergence, and its slope (or the intercept on the 1/n axis) indicates the
exponent c.

This plot, shown by the crosses in figure 2, is nearly straight, and clearly has an
intercept less than unity; thus Dean’s series converges for K somewhat greater than
576, Gaunt & Guttmann (1974) point out that a coincident weaker singularity will give
a multiple of 1/n? as the next term in (4.1); it can be cancelled, and the Domb-Sykes
plot straightened, by a small shift in #. The circles in figure 2 show that plotting vs.
1/(n+1}) instead of 1/n straightens the plot considerably. Fitting a straight line as
shown then makes it unmistakably clear that the radius of convergence is

(s15K)? = (0-967)1.

576

To refine this value, we fit a polynomial of degree N in (n+ })~! to the last N +1
points in figure 2. This is most easily done by forming a Newille table of the a,/a,_,,
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as described by Gaunt & Guttmann (1974). The terminal slopes amply confirm the
square-root singularity to at least five figures, and successively higher-order intercepts
on the vertical axis give

A1 ~ 0-9670, 0-96693, 0-966854, 0-966861, 0-966856, 0-966859,
0-966859, 0-966858, 0-966858, 0-966858, 0-966858,.... (4.2)

To substantiate and further refine this result, we have applied a variety of techniques,
including analysis of the inverse series (2.8). These all give consistent results. For
example, if we fix the terminal slope to correspond to the square-root singularity and
then form a new Neville table, all polynomials in (n + )~ of from the seventh to the
twelfth degree give ! = 0-96685840. Thus we conclude that Dean’s series (2.7) for
the flux ratio converges up to

(15K)? = (0-96685840)1, K = 585-78878. (4.3)

The question is sometimes asked whether the series for other quantities will have
the same radius of convergence. It seems plausible that they will; and this was con-
firmed by analysing the series for four local quantities:

(i) the axial velocity w down the centre of the pipe,

(ii) the transverse velocity across the centre of the pipe,

(iii) the transverse skin friction (or vorticity) at the top of the pipe,

(iv) the gradient of skin friction at the innermost point.

In each case the Domb-Sykes plot is just as smooth as figure 2, and clearly points to
the same radius of convergence. The slopes also indicate that the singularity is a
square root for each quantity, this agreement arising only because the square root is
not the leading term in the expansion about the nearest singularity but is preceded by
a constant. Furthermore, Domb-Sykes plots for the limited number of coefficients
computed by Larrain & Bonilla (1970) make clear that the radius of convergence is
also the same for higher powers of the curvature ratio a/L, whereas the order of the
singularity for the coefficient of (a/L)™ is apparently  —m.

5. Analytic continuation to K = o©

The nearest singularity has no apparent physical significance. We therefore banish
it to infinity, and increase the range of convergence for physically significant K by
applying an Euler transformation, recasting the series in powers of

(37 K)?

€ = (0-96685840) 1 + (z25K )2 (8.1)
Thus Dean’s series (2.7) for the flux ratio becomes
F/F, = f:Oc,,en = 1—0-03162¢ — 0-01886€%— ..., (5.2)
e
and the inverse series (2.8) becomes
(F/F)- = §Odnen — 1+0-03162¢ + 0-01986¢2+ ... . (5.3)
n—

The coefficients ¢, and d, up to terms in ¢!2 are given in table 1.
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Fiaure 3. Domb-Sykes plots for Dean series after Euler transformation. O, direct
geries (5.2); +, inverse series (5.3); L

, asymptotes for ¢ = 5.

The new coefficients have fixed signs,indicating that the nearest singularity now lies
on the positive real axis of e. This suggests that, just as for the Oseen drag of a sphere
(Van Dyke 1970), we have succeeded in continuing the solution analytically to
infinite X, which corresponds to ¢ = 1. This is confirmed by Domb-Sykes plots for the
new direct and inverse series (figure 3), and by the associated Neville tables, which
show the nearest singularity to lie at ¢ = 1 to within four or five significant figures.

By contrast, estimation of the exponent o of that singularity is a delicate matter, to
which we have devoted much effort. Figure 3 makes clear that its value is very small;
we show the terminal slopes for the direct and inverse series with & = 3, which is the
value according to all the boundary-layer models in the literature. However, the
corresponding Neville tables are irregular; and various attempts to substantiate this
value, for example by admitting coincident weaker singularities, have invariably led
to inconsistencies.

The most glaring inconsistency arises from attempting to estimate the coefficient C
of the singularity at € = 1 by completing the series (Van Dyke 1974) on the assumption
that a = {4, thatis, by fitting the Taylor expansion of C(1 —¢)+s to successive terms in

12»
the Euler-transformed Dean series (5.2). This yields the sequence of estimates

C ~ 1, 0-379, 0-494, 0-548, 0-581, 0-603, 0-618, 0-631,
0-640, 0-647, 0-653, 0-658, 0-663, .... (5.4)

These plot almost linearly »s. 1/n, extrapolating to C = 0-71. On the other hand,
fitting C—1(1 —€)~i¥% to the corresponding inverse series (5.3) yields

C ~ 1, 2:635, 2273, 2-146, 2-083, 2-:047, 2:025, 2-010,
2-000, 1-994, 1-990, 1-988, 1-987, ..., (5.5)

and when plotted vs. 1/n these extrapolate instead to C = 1-98.

We have concluded after considerable study that this discrepancy can be resolved
only by abandoning the exponent o = 7%, and with it the traditional boundary-layer
model of Adler (1934) and his successors. In fact, we have determined a by requiring
that the completion coefficients for the direct and the inverse series be compatible.

Figure 4 shows that their product extrapolates linearly in 1/n, and tends to unity for

= .1
x =35
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F1eure 4. Extrapolation of product of completion
coefficients for direct and inverse series.

This conclusion is so surprising that we have sought to corroborate it in a number of
ways. Of these we mention three devices that were applied to the Euler-transformed
series (5.2) and (5.3). First, we applied to the direct and inverse series the technique
of ‘critical-point renormalization’ (Hunter & Baker 1973), which enables one to
estimate the difference between the exponents for two different functions known to be
singular at the same point. This involves forming a new series for a ‘generating
function’ whose exponent is one less than the difference of the original two exponents.
In our case this new exponent is 2a — 1, and then making a Domb-Sykes plot of the
new coefficients, and a Neville table, yields the sequence of estimates

a =~ 0-0555, 0:0550, 0-0535, 0-0523, 0-0512, 0-0503, .... (5.6)

(We dare proceed no further, though the next value is still closer to ;;, because the
upper halves of Neville tables have been found generally to be erratic in this problem.)

Second, we show in figure 5 a magnified Domb-Sykes plot with » shifted by the
3 that was found to straighten the plot for the original series (figure 2). The ratios are
seen to lie close to thelinesfor ¢ = 3%, and to twine slightly about them: a phenomenon
that was encountered in exaggerated form in the corresponding plot for the Oseen drag

of a sphere (Van Dyke 1970, figure 2).
Third, we have formed the series for the logarithm of the flux ratio F,/F,. Then

comparing with the expansion of In (1 —€)* yields the sequence of estimates

a =~ 0:03162, 0-03872, 0-04197, 0-04384, 0-04505, 0-04588, 0-04649,
0-04694, 0-:04729, 0-04756, 0-04777, 0-04793, .... (5.7)

Except for the first three, these are fitted to within { %, by
o = Fg(1—1/2n). (5.8)

One might object to ;}; as being a rather unlikely exponent. However, we shall see
that when converted to quantities appropriate to large values of K it corresponds to
an exponent having the more plausible value }.
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Ficure 5. Magnified Domb-Sykes plot. O, direct series; +, inverse series;
, asymptotes for a = 5.

An independent analysis of the original Dean series (2.7), which does not depend on
our estimate (4.3) of its radius of convergence, is provided by Padé approximants.
A Padé approximant is the ratio of two polynomials that, when expanded, agrees with
a power series to as many terms as possible. Such rational fractions are known to have
remarkable properties of analytic continuation (Baker 1965). A Padé approximant
can simulate a singularity only by the poles that are the zeroes of its denominator; it is
therefore more effective to treat a function with a branch point by first forming the
series for its logarithmic derivative. Because we are concerned with the singularity at
K? = o0, we form the [N/(N + 1)] approximants, whose denominators are one degree
higher than the numerators. Thus from just three terms of Dean’s series (2.7) we form
the [0/1] approximant:

d F, 0-03058 0-04077
- In=¢ = ~ Kz . 5.9
TUGTREE CE T TR 0TI GI R~ ek 0 T B9
The residue 0-04077 at (515 K)? = oo is to be compared with our estimate « = 3 for
the exponent. Likewise, forming the [}], [£],...,[§] approximants gives

~ 0-04077, 0-04666, 0-04821, 0-04856, 0-04858, 0-04867, ... . (5.10)
This sequence is evidently (with the slightly erratic convergence that is typical of Padé
approximants) approaching ; rather than J;.

6. The secondary singularity at K = «©

Convinced that the dominant singularity is a multiple of (1 —¢€)~%%, we undertake to
extract it, and thereby improve the rate of convergence of the series. Multiplicative

extraction yields
F/F, = (1-e) 3 e,en
n=0

= (1 —¢)v (14 0-01838¢ + 0-00581¢€% +...). (6.1)
The first 13 coefficients e, are listed in table 1.
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F1GURE 6. Domb-Sykes plot for Dean series after Euler transformation and
multiplicative extraction of dominant singularity. , asymptote for & = 1.

A new Domb-Sykes plot, with » again shifted by { (figure 6), shows that the
secondary singularity is also located at ¢ = 1. The slope clearly corresponds to the
exponent a = 1. Such a non-negative integral value indicates that logarithmic terms
intervene, in this case a multiple of (1 —¢)In (1 —¢). The same conclusion is a conse-
quence of (5.8), which in fact corresponds to the more definite result

F/F, = A(1 €)1+ (1 —¢)In (1 —€)+...]. (6.2)

Evaluating the sum in (6.1) after completing it according to (6.2) gives 4 = 1-0343.
Thus we recast the series finally as

F/F, = 1-0343(1 —)¥s [1 +&(l—e)In(1—€)+ Zof,,e"] , (6.3)
where the first 13 coefficients f, are listed in table 1. A new Domb-Sykes plot oscillates
too much to berelied upon, but suggests that the tertiary singularity may be a multiple
of (1-¢)2In(1—¢). Further refinement is unnecessary, however, because this last
version of Dean’s series yields at least four-figure accuracy for all values of K.

Our difficulties in determining the exponent a can now be understood by studying
(6.2) as a model. Its expansion in powers of ¢ yields a Domb~-Sykes plot that twines
about the asymptote just like figure 5, and its Neville table is equally irregular up to
the first 13 terms. However, as the number of terms is increased to 20, the exponent
a = o unmistakably asserts itself. Thus our elaborate analysis in § 5 could probably
have been replaced by a simple ratio test if we had been able to extend Dean’s series
(3.1) to the 40th rather than only the 24th power of K.
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K D K A /A,

50 28-28 5-00 1-000
312'5 70-71 12-46 1-008

576 96 16-58 1-024

800 113-14 19-26 1-039
1012-5 127-28 21-40 1-051
4000 252-98 37-98 1-178
15625 500 65-70 1-345
22931 605-72 76-61 1-398
45000 848-53 100-5 1-492
62500 1000 114-4 1-545
80000 1131-37 126-5 1-581
130050 1442-50 153-7 1-660
250000 2000 199-2 1-774
285012-5 213546 210-3 1-795
765625 3500 311-8 1-985
877812-5 3747-67 329-8 2-:009
1562500 5000 414-7 2-131
2000000 5656-85 458-5 2-181

TABLE 2. Friction factor from modified Dean series (6.3)
as funetion of three variants of Dean number.

7. Comparison with other results for friction ratio

We have worked with the parameter K of Dean, which is convenient for theoretical
purposes although it is based on a hypothetical reference speed. Two other versions of
the ‘Dean number " are in common use in the literature.t McConalogue & Srivastava
(1968) introduced a parameter D that is related to that of Dean simply by D = 4K#,
White (1929) introduced an essentially different parameter « that is more useful in
experiment (and also at high Dean number) because it is based on the actual mean
velocity W down the pipe, according to

K Z“W_(“—)%. (7.1)

il

v \L
It is therefore related to Dean's K and McConalogue & Srivastava’s D through the
flux ratio itself, according to

oy

K K
= 28—, 7.
K 2D 72
Values of the friction ratio A,/A; = (F./F,)~! given by our modified Dean series (6.3)
are shown in table 2, together with the corresponding values of D and «. The values of
K chosen are those for which finite-difference solutions are available.
In terms of White's parameter «, Dean’s series (2.7) for the flux ratio becomes
F,/F, = 1—0-03058(x2/288)% + 0-00819(x2/288)* + ... . (1.3)
We have seen that this converges for x < 16-7. To compare with the boundary-layer
analyses, we also convert our asymptotic expression to White’s parameter. We have

@

t The notation is confusingly non-uniform; for example, the K of Adler (1934) and Larrain &
Bonilla (1970) is our (and Dean’s) 523K ; the K of Mori & Nakayama (1965) and Itd (1969) is our
(and White’s) «; the K of Smith (1976) is our 1K and his D is our 2-3D; and the Np, of Truesdell
& Adler (1970) and Austin & Seader (1973), the k of Hasson (1955) and Barua (1963), and the D of

Prandtl (1931) are our «.
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F1cURE 7. Experimental friction ratios for loose coiling. O, White (1929);
+., @, It (1959); , present theory.

seen that at high Dean number the flux ratio decreases as 1-0343(1 —¢)#. In view of
(5.1), this means that

F,/F,~ 1-9562K—3 as K —oo. (7.4)
Combining this with (7.2) yields the asymptotic relationship between White’s and
Dean’s parameters:  ~ 1-3833K%. (7.5)

Hence the flux ratio decays as 2:1212x—1, or the friction ratio grows asymptotically as
AfA = (B/F)™* ~ 0-47136k1. (7.6)

We see from table 2 that this agrees with our complete expression to within 1 %, above
x = 30,

We can now compare our results for the friction factor with previous experiments,
boundary-layer analyses and numerical solutions.

Figure 7 shows, in the logarithmic plot introduced by White (1929), a comparison
with experiments on pipes with curvature ratios no greater than ;1 . The agreement is
excellent, the measured friction ratios lying on our curve within experimental scatter
until they break away sharply at the onset of turbulence. They seem to cover enough
of the straight portion to confirm our conclusion that the friction varies asympto-
tically as .

Figure 8 shows how the situation changes when more tightly coiled pipes are
included. The envelope of experimental points, which presumably corresponds to
steady laminar flow, then rises continuously above our curve. It is well fitted by the

equation A /A, = 0-0969k % + 0-556, (7.7)

which Hasson (1955) proposed to correlate White’s measurements in the range
30 < x < 2000.F

t+ On the other hand, Prandt] (1931) fitted the experiments with A /A, = 0-37«°%.
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(1934); +, Itd (1959); ——, present theory; ———, correlation of Hasson (1955).

A square-root variation with « is also predicted by all the boundary-layer analyses
in the literature. Despite significant differences in the basic assumptions and methods
of approximation, they all give practically the same asymptotic result:

0-1064xt (Adler 1934),

0-09185«t (Barua 1963),

0-1080«* (Mori & Nakayama 1965),
0-1033k} (It 1969).

(7.8)

>‘I>J
[

L

The results of finite-difference solutions by three different investigators are shown
in figure 9. They agree well with our theory up to about « = 100, then rise above it in
accord with the measurements for tighter coiling, and tend towards the boundary-
layer results. In fact, Collins & Dennis (1975) have fitted their values with

A./A, = 0-1028x + 0-380. (7.9)

8. Discussion

It is an unexpected result of our analysis that the friction factor in a loosely coiled
pipe grows asymptotically as the one-fourth power of the Dean number based on mean
axial speed. This conclusion appears to be confirmed by experiments for curvature
ratios smaller than 315, whereas more tightly coiled pipes tend towards a square-root
variation.

This suggests that the asymptotic behaviour may depend on the manner in which
the Dean number tends to infinity. Dean’s expansion (2.7) is based on the double limit

20 W W (a\}
aa//; : :’} ¢ = 2_“;’K<ﬁ) fixed (and small), (8.1)

L
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Ficure 9. Friction ratio from finite-difference solutions. O, Collins & Dennis (1975), a/L — 0;
+, Austin & Seader (1973), a/L = 0-01; @, Truesdell & Adler (1970), a/L = 0-01; ——, present
theory; ———, Hasson’s (1955) correlation of experiments.

and we have subsequently extracted the limit k — co. On the other hand, flow at high
Dean number in a pipe of moderately small curvature ratio would correspond to the

single limit 2aW /v - o0, a/L fixed (and small). (8.2)

An alternative explanation of the departure of the experiments from our curve
might be that for more tightly coiled pipes the steady laminar flow is succeeded not by
turbulent flow, but by an intermediate regime of unsteady laminar motion, with higher
friction. Introducing coloured fluid into the fully developed flow in glass pipes with
L/a = 18-7 and 31-9, Taylor (1929) found that at a certain speed the coloured band
began to vibrate in an irregular manner, but retained its identity through at least one
whole turn of the helix; and the motion became fully turbulent only at an appreciably
higher speed.

However, neither of these explanations can account for the discrepancy in the
boundary-layer results, for they are all based on the assumptions of vanishing curvature
ratio a/L and steady flow. We conclude that they are incorrect.

The various boundary-layer analyses differ among themselves in basic structure, in
particular in the provision that they make for recirculation of the boundary layer that
is supposed to flow inward on the walls. Adler (1934) believes that the boundary layers
on the two halves of the torus collide at theinnermost circle, separate there, and form
a re-entrant jet that moves outward through the core; but he makes no attempt to
incorporate that phenomenon into his analysis. Likewise, It6 (1969) finds that his
boundary-layer solution breaks down in the immediate vicinity of the innermost ring,
but does not inquire into the subsequent course of the fluid. On the other hand Mori &
Nakayama (1965), believing that collision of the boundary layers is unreasonable,
deliberately suppress it. Smith (1975), assuming that a solution with attached
boundary layers exists, shows that the velocity would vanish in non-analytic fashion
at the innermost circle. Finally, Barua (1963) claims that the boundary layers separate
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from the wall at about 27° from the inside, but does not consider how that would alter
his assumed core flow.

If the conventional boundary-layer model is wrong, how is it to be corrected ? It will
apparently contain multiple regions, scaled according to various powers of the Dean
number; but we have been unable to devise a consistent structure. In principle, we
could extract it from our series; but each local flow quantity has to be analysed by the
laborious process described in §§ 5 and 6. We have, however, treated in this way the
velocity components at the centre of the pipe. The axial velocity w down the centre
(referred to W) is found to decay asymptotically as k3, just as in the boundary-layer
models. On the other hand, the transverse velocity across the centre (referred to v/a)
appears to grow as «, in disagreement with the «? from the boundary-layer theories.
This would seem to support Adler’s suggestion of a re-entrant jet.

Most of our disagreement with the numerical solutions (figure 9) is also explained
if the asymptotic behaviour depends on the limiting process, for the curvature ratio is
finite (though small) except in Collins & Dennis’s calculations. In any case, it is likely
that all the computations suffer from too large a mesh. At the higher Dean numbers,
where discrepancies appear, only a few points were used within the boundary layer.
In a comparable finite-difference solution for a curved pipe of square cross-section, the
calculations of Cheng, Lin & Ou (1976) show the friction ratio increasing approximately
as kt up to x = 100, and thereafter rising much faster; but at just that point the values
of the friction evaluated from the pressure gradient and from the wall shear begin to
differ considerably, so that both values are suspect.

We conclude that the technique of extending a Stokes series by computer and then
analysing and improving it has, in this problem, yielded information that is not
accessible by any other method. In fact, the nature of steady fully developed flow in a
loosely coiled pipe has been seriously misrepresented by both numerical solutions,
which appear to suffer from inadequate mesh refinement at the higher Dean numbers,
and boundary-layer analyses, which have all been based on an incorrect model of the
flow structure.
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